These differences in bond distances and the deviations between the angles (cf. Table 7) may be a result of a higher degree of geometrical strain in the denser, threedimensional Te₂O₅ structure. However, the differences are astonishingly small, and it is remarkable that there is no significant difference in the Te(VI)–O(3) and Te(VI)–O(6) bond distances, since O(3) and O(6) correspond to OH groups in H₂Te₂O₆, while they bridge two Te(VI) atoms in Te₂O₅.

We wish to thank Professors M. Maurin and G. Lundgren for their unfailing interest and for their support of this work. Thanks are also due to Ing. E. Andersson for excellent assistance and to Dr S. Jagner for revising the English text. Financial aid has been provided by the Swedish Natural Science Research Council (NFR, Contract No. 2318).

References

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- COPPENS, P. & HAMILTON, W. C. (1970). Acta Cryst. A 26, 71-83.
- COPPENS, P., LEISEROWITZ, L. & RABINOVICH, D. (1965). Acta Cryst. 18, 1035–1038.
- CROMER, D. T. (1965). Acta Cryst. 18, 17-23.

- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104-109.
- CRUICKSHANK, D. W. J. (1970). In Crystallographic Computing, p. 195. Copenhagen: Munksgaard.
- DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A24, 390-399.
- GENTLEMAN, W. M. & SANDE, G. (1966). Proceedings Fall Joint Computer Conference, pp. 563–578.
- HANKE, K., KUPČIK, V. & LINDQVIST, O. (1973). Acta Cryst. B29, 963–970.
- International Tables for X-ray Crystallography, (1962). Vol. III. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- LAMMERS, P. & ZEMANN, J. (1965). Z. anorg. allgem. Chem. 334, 225–234.
- LINDQVIST, O. (1967). Acta Chem Scand. 21, 1473-1483.
- LINDOVIST, O. & MORET, J. (1973). Acta Cryst. B29, 643-650.
- MORET, J. (1972). Thesis. Laboratoire de Chimie Minérale C, Université des Sciences et Techniques du Languedoc, Montpellier, France.
- MORET, J. & LINDQVIST, O. (1972). C. R. Acad. Sci. Paris. 275, 207-210.
- MORET, J. & MAURIN, M. (1968). C. R. Acad. Sci. Paris, 266, 708-710.
- ROSICKY, J., LOUB, J. & PAVEL, J. (1965). Z. anorg. allgem. Chem. 334, 312-320.
- TEN EYCK, L. F. (1973). Acta Cryst. A29, 183-191.

Acta Cryst. (1973). B29, 963

The Crystal Structure of CuTe₂O₅

BY KURT HANKE AND VLADIMIR KUPČIK

Mineralogisch-Kristallographisches Institut der Universität Göttingen, 34-Göttingen-Weende, Germany (BRD)

AND OLIVER LINDQVIST

Department of Inorganic Chemistry, Chalmers' University of Technology and the University of Göteborg, P.O. Box, S-402 20 Göteborg 5, Sweden

(Received 30 December 1972; accepted 2 January 1973)

CuTe₂O₅ crystallizes in space group $P_{1/c}$, with the following cell dimensions: a = 6.871(2), b = 9.322(2), c = 7.602(2) Å, $\beta = 109.08(1)^{\circ}$, and with Z = 4. The phase problem was solved by direct methods and the final atomic parameters were obtained by full matrix least-squares refinement based on 3556 independent reflexions, an R value of 0.048 being obtained. The structure is a three-dimensional net resulting from copper and tellurium coordination polyhedra sharing oxygen atoms. Each oxygen atom interacts with three metal atoms, two of the interactions being strong and one weak. The Cu–O polyhedron may be described as a distorted octahedron with four strong bonds (Cu–O: 1.950–1.969 Å) and two weaker bonds (Cu–O: 2.305, 2.780 Å). Both independent tellurium atoms have three strong pyramidal bonds to oxygen (Te–O: 1.859–2.019 Å) and, in addition, one of them has a fourth interaction with an oxygen atom (Te–O: 2.402 Å), while the other has two weaker bonds (Te–O: 2.607, 2.733 Å).

Introduction

The structure of some double oxides of type $MO.xTeO_2$ where M=Zn or Cu have been investigated, viz. ZnTeO₃ (Hanke, 1967), CuTeO₃ (Lind-

qvist, 1972) and $Zn_2Te_3O_8$ (Hanke, 1966). The aim of this work was to determine the structure of another member of this series, $CuTe_2O_5$, which, like the abovementioned oxides, has been prepared synthetically. Among the tellurium-containing minerals whose structures are known, denningite (Walitzi, 1965) has a chemical composition closely related to that of $CuTe_2O_5$.

X-ray investigations of $CuTe_2O_5$ were commenced by Moret, Philippot & Maurin (1969). These authors developed a method for preparing single crystals and determined the cell dimensions and space group. A single-crystal data set, consisting of 572 visually estimated intensities, was collected by Lindqvist (1971). It proved, however, difficult to solve the structure from these relatively poor film data, and more accurate and extensive diffractometer data were therefore collected and used in the investigation described in the present paper.

Experimental

The preparation of crystalline $CuTe_2O_5$ has been described previously (Moret, Philippot & Maurin, 1969). The synthesis of the crystals used in this study was performed independently, by rapid heating of a stoichiometric mixture of CuO and TeO₂ to a melt, followed by slow cooling to a temperature just below the melting point. This temperature was maintained for three hours making the formation of CuTe₂O₅ crystals of suitable size for single-crystal X-ray work possible.

The crystal used for the data collection was mounted along the *b* axis on an automatic Stoe four-circle diffractometer. The dimensions of the crystal are given in Table 1. The radiation used was graphite monochromated Mo $K\alpha$ radiation, and the intensities were measured using the ω -2 θ scanning procedure, with a scan speed of 0.6° per min in 2 θ . The background intensity was measured for 30 sec at each end of the scanning interval. A standard reflexion, 008, was measured every 50 reflexions. It appeared that there was no time dependent variation in the intensity of this standard reflexion, and only 10 of the 85 recorded values deviated more than $\pm 2\%$ from its mean intensity (maximum deviation: 5%). The data were collected out to $2\theta \simeq 90^\circ$, 3900 independent reflexions being measured in all.

Table 1. Crystal dimensions

Boundary planes and their distances from an internal origin.

h	k	l	<i>d</i> (mm)
0	1	0	0.082
0	-1	0	0.085
1	0	0	0.020
1	0	0	0.020
-1	0	2	0.020
1	0	-2	0.020
Crystal	volu	me:	0.28×10^{-3} mm ³ .

The measured intensity peaks were corrected for background, and assigned standard deviations $\sigma(I) = K \cdot \omega \cdot [I_{\text{peak}} + t^2 \cdot I_{\text{backgr}} + \sigma_m \cdot (I_{\text{peak}}^2 + t^2 \cdot I_{\text{backgr}}^2)]^{1/2}$, with $t = t_{\text{peak}}/t_{\text{backgr}}$, K = linear constant, $\omega = \text{radial velo$ $city}$, and with $\sigma_m = 0.025$ (assumed statistical error of each measurement). These calculations and correction for Lorentz and polarization effects were performed with a program written by Süsse (1969). Those 3556 reflexions with $\sigma(I)/I < 0.3$ were defined as observed, and the F_o values were subdivided into two groups, one more $[\sigma(I)/I < 0.1]$ and one less significant, according to $\sigma(F)_{\text{sign}} = \frac{1}{2} \cdot \sigma(I)/[\sigma(I) \cdot \text{Lp}^{-1}]^{1/2}$ and $\sigma(F)_{\text{unsign}} = \frac{1}{2} \cdot [\sigma(I) \cdot \text{Lp}^{-1}]^{1/2}$ respectively. The absorption correction, including pre-calculations for the refinement of a secondary extinction parameter, was performed with a version of the program DATAPH (Coppens, Leiserowitz & Rabinovich, 1965). The transmission factors, which were in the range 0.47–0.55, were not applied to the structure factors until the final stages of the refinement of the structure.

The space group reported earlier is $P2_1/c$ (Moret, Philippot & Maurin, 1969; Lindqvist, 1971), and this was checked by diffractometer measurements of reflexions h0l with l=2n+1 and 0k0 with k=2n+1. The cell dimensions were determined by means of a leastsquares refinement based on the setting angles of seven high-angle reflexions, and were found to be identical, within the standard deviations, with those determined by Moret *et al.* (1969). Cell dimensions and other crystallographic data are given in Table 2.

Table 2. Crystallographic data for CuTe₂O₅

a = 6.871 (2) Å b = 9.322 (2) c = 7.602 (2) $\beta = 109.08 (1)^{\circ}$
$V = 460 \cdot 1 A^3$
Z=4
398.76
$\rho_0 = 5.75 \text{ g cm}^{-3}$
$\rho_{c} = 5.75 \text{ g cm}^{-3}$
h0l when $l = 2n + 1$
0k0 when $k = 2n + 1$
P2./c
+(x, y, z) + (x + y + z)
$\pm (x, y, z), \pm (x, z - y, z + z),$
1//·3 cm

Structure determination and refinement

A three-dimensional Patterson summation was calculated with the program *FURIE* (Matzat, 1971). It was evident that at least the tellurium and copper atoms must occupy general positions, 4(e), in space group $P2_1/c$. There were, however, a number of independent ways in which the two tellurium positions could be chosen so as to give Te-Te vectors in accordance with the dominating peaks in the Patterson function. One such set of Te coordinates has been given previously (Lindqvist, 1971), but this set was subsequently found not to give a correct description of the structure. At this stage it was considered most efficient to solve the structure by means of direct methods.

After a Wilson plot (Wilson, 1942), normalized structure factors (Karle & Karle, 1966) were calculated

for all reflexions with $2\theta < 60^{\circ}$. $\langle |E| \rangle^2$ was standardized to 1.00, and the signs of those 223 reflexions having |E| > 1.55 were determined using the \sum_2 relationship (program *REL*, written by R. E. Long). The basic set giving the correct sign determination is shown in Table 3.

ì

Table	3.	Statist	ics fo	or the	norr	nalized	structure	factors
	an	d basic	set u	sed i	n the	structu	re solution	1

	Experime	ntal	Theo	oretical
			Cent.	Non-cent
$\langle E \rangle$	0.821		0·798	0.886
$\langle E ^2 - 1 \rangle$	0.902		0.968	0.736
$\langle E ^2 \rangle$	1.000		1.000	1.000
<i>E</i> > 1	36.55%	6	31.73%	36.79 %
E > 2	4.02		4.55	1.83
E > 3	0.00		0.27	0.01
]	Basic set		
	h k l	Ε		
	014	2.54	1	
	-506	2.74	} origin fi	xing
	553	2.63	İ	U
	-1 0 6	-2.36	,	
	1 4 3	-2.50		
	400	2.80		

A Fourier summation of the 223 E values gave E maps with clearly resolved tellurium and copper positions (R value=0.23). A subsequent electron density calculation using all reflexions with $2\theta < 60^{\circ}$ revealed the oxygen atoms. A preliminary isotropic refinement yielded an R value of 0.073 which showed that the correct model had been found.

Correction was then made for absorption, and the final cycles of refinement were performed with the full-matrix least-squares program *LINUS*. This program was originally written by Busing, Martin & Levy (1962) and extended for refinement of secondary extinction parameters by Coppens & Hamilton (1970).

Table 4. Agreement analysis after the last cycle of refinement

The quantities $w\Delta^2$ are normalized sums, $K_{norm} \cdot (\sum w|F_o - |F_c||^2)$, and N is the number of reflexions within each F_o interval.

F _o interval	N	w⊿²
0.0-12.0	334	0.56
12.0-17.5	400	1.11
17.5-23.0	377	0.92
23.0-28.5	350	0.67
28.5-37.0	480	0.58
37.0-45.5	385	0.66
45.5-54.5	273	0.63
54.5-69.0	360	0.90
69.0-85.0	250	1.21
85.0-	347	2.91
$R = \sum F_1 - F $	-11/Σ <i>F</i> .	= 0.048
$R_w = (\sum w F_o -$	$ F_c ^2 / \sum w F_o^2$	1/2 = 0.037

The observations were weighted using the previously described estimates of
$$\sigma(F)$$
, with $w=1/\sigma^2(F)$. The resulting weight analysis is given in Table 4, and the conventional *R* value converged to 0.048. (The structure was also refined after removal of 557 of the weak, less significant reflexions. The resulting parameters did not differ significantly from the previous values, and, although the *R* value dropped to 0.038, higher *e.s.d.*'s were obtained.)

The final parameter list is given in Table 5, and observed and calculated structure factors are compared in Table 6. The final value of the isosotropic extinction parameter, g (Coppens & Hamilton, 1970), was 0.574 (14) × 10⁴.

Discussion

Atomic scattering factors due to Cromer & Waber (1965) were used for the tellurium atoms, and those given by Doyle & Turner (1968) for the copper and oxygen atoms. The tellurium and copper values were corrected for the real part of the anomalous scattering effect (Cromer, 1965).

Interatomic distances and bond angles (Tables 7 and 8) were calculated with the program *DISTAN*, written by A. Zalkin, Berkeley, California, and the drawings (Figs. 1 and 2) were obtained with the program *ORTEP* (Johnson, 1965). The calculation with these programs and with *DATAPH* and *LINUS* were performed on an IBM 360/65 computer in Göteborg, while the programs *FURIE* and *REL* were run on an Univac 1108 computer of the 'Gesellschaft für Wissenschaftliche Datenverarbeitung' in Göttingen, as was the initial refinement with a version of the Busing, Martin & Levy least-squares program (1962), modified by S. Durovic.

The CuTe₂O₅ structure is a rather complicated threedimensional net of Cu–O and Te–O bonds. This is illustrated in Figs. 1 and 2, in which it can also be seen that the Cu(II) atom is strongly bonded to four oxygen atoms, while each of the two crystallographically independent Te(IV) atoms has three strong oxygen bonds. Additional weak M–O interactions (*cf.* Table 7) also occur, and each oxygen atom has two

Table 5. Final atomic parameters in CuTe₂O₅

The anisotropic temperature factor is $\exp \left[-2\pi^2(h^2a^{*2}U_{11}+k^2b^{*2}U_{22}+l^2c^*U_{33}+2hka^*b^*U_{12}+2hla^*c^*U_{13}+2klb^*c^*U_{23})\right]$. The numbers in parentheses are the e.s.d.'s calculated by the least-squares program and refer to the least significant figures in each value.

	x	У	Z
Cu	0.34117 (8)	0.48715 (5)	0.29408 (7)
Te(1)	0.13182(4)	0.19969 (3)	0.08684(3)
Te(2)	0.65120(4)	0.32349(3)	0.05685 (3)
O(1)	0.5015 (5)	0.1056 (2)	0.3232(4)
O(2)	0.8956 (5)	0.1818(3)	0.4649 (4)
O(3)	0.3185 (5)	0.3483 (3)	0.0931 (4)
O(4)	0.1327 (5)	0.3732(4)	0.3560 (5)
O(5)	0.6150 (5)	0.3726 (3)	0.5067 (4)

Table 5 (cont.)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Cu	0.0106(2)	0.0063(2)	0.0088(2)	-0.0016(1)	0.0052(1)	-0.0009(1)
Te(1)	0.00799 (8)	0.00737 (8)	0.00833(8)	-0.00093(6)	0.00415(7)	-0.00073(6)
Te(2)	0.00892 (8)	0.00670 (8)	0.00663 (8)	0.00025(6)	0.00256 (6)	-0.00005 (6)
O(1)	0.0099 (10)	0.0106 (11)	0.0106(11)	0.0010 (8)	0.0025(9)	-0.0033(9)
O(2)	0.0085 (9)	0.0155 (11)	0.0111 (11)	-0.0025(9)	0.0053(9)	-0.0026(9)
O(3)	0.0113 (11)	0.0108 (11)	0.0111 (11)	-0.0044(8)	0.0060 (9)	-0.0034(9)
O(4)	0.0146 (12)	0.0127(12)	0.0116 (13)	-0.0030(9)	0.0068 (10)	0.0037 (9)
O(5)	0.0191 (13)	0.0062 (10)	0.0112 (11)	0.0014 (9)	0.0057 (10)	-0.0017 (8)

short and one long M bond. The angles around the oxygen atoms and oxygen-oxygen contacts are given in Table 8.

The covalent character of both the copper and the tellurium bonds results in an open structure. The average oxygen volume, defined as $V_{cell}/(number of oxygen atoms in the cell)$, is approximately the same in CuTe₂O₅ (23.0 Å³) as in CuTeO₃ (23.5 Å³), there being distinct tunnels running through the structure

of the latter (Lindqvist, 1972). However, it is useful to regard the Te(IV) lone pair, with its specific direction and its space requirements, as occupying approximately the same volume as an anion in the particular structure (Åström, 1972). In this case the average anion volume would be 16.4 and 17.6 Å^3 for CuTe₂O₅ and CuTeO₃, respectively, which is closer to the corresponding value 15.6 Å^3 in hexagonal close-packed TiO₂.

Table 6. Observed and calculated structure factors

The columns are h, F_o and F_c . Unobserved reflexions are marked with an asterisk.

	7 50 -59
هدهه بعنه المالية الم 1971 - مالية المالية ال 1974 - مالية المالية الم	M 14 0
またましたないが、「「「「」」の「」」の「「」」」」」、「「」」」、「「」」」、「「」」」、「」」、「	11 67 19
は、「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	-1 156 161
altilitie seven altilitie seven and altilitie seven and altilitie seven altilitie seven altilitie seven and alt seven seven alterities verystrister verse alterities and alterities alterities alterities alterities alterities seven seven alterities verystricter alterities alterities alterities alterities alterities alterities alterities	-9 74 .75
الله:المالية:(12 مالة:2014) معالمانالة:(12 معالمات معالمات) معامليات معامياتين معموماتيانيات معارمين 1944:1945 - معادلة معددمالية:(12 مالة:12 مالة: 12 مالية: 12 مالية: 12 مالية: 12 مالية: 12 مالية: 12 مالية: 12 م 1944:1945 - مالية: مالية: 12 مال	1 21 21
1946) –	1 34 36 2 98 -100
ιάλιμα μα ματά μα ματά μα ματά μα ματά μα ματά μα ματά ματά	-7 44 -41
、それにはたいでした。それであると、「自身はためになった」で、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	-7 39 36 -6 77 78
יוד אומנוטוריייטוליו אומנוטורייטיטיטיט (גיירסטטטט) אירסטטטטטט אומנטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	n 7 - 30 7 46 41
اللايات المايات	-12 52 53

					Table (5 (<i>cont.</i>)					
۲۰۰۰، ۱۰۰، ۱۰۰، ۱۹۹۵ ۲۵۰ ۲۰۰۰، ۱۰۰، ۱۰۰، ۱۹۵۵ ۲۵۰ ۲۰۰۰، ۱۹۵۵ ۲۵۰ ۲۰۰۰، ۱۹۹۵ ۲۵۰ ۲۵۰ ۲۵۰، ۲۵۰، ۱۹۵۵ ۲۵۰، ۱۹۵۵ ۲ ۲۰۰۶ ۳۲۷ ۵۰۲۵ ۲۵۰۰ ۲۰۰۰، ۲۵۰۶ ۲۰۰۵ ۲۰۰۵ ۲۰۰۵ ۲۰۰۵ ۲۰۰۵ ۲۰۰۵ ۲۰۰۵	0	・・・・・・、「はないたいたっという」。「ないたいで、「ないないの」。「ないないの」。「たい」」」」」」「「ない」」」、「ない」、「ない」、「ない」」」」」」」」」」」」	まったは、「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	ー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1201000 Assession AssesAssession Assession	di. 	4141414-1	はしいしい。 また、「「「」」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」	غَلْثَانَا معلمانا (مامانانانا) ومعادمانانانا، «مانانانانا» «معاماتانانانا»، «مارماتانانا، المالية»، «ما المحال 2013مان محادمات (ماناناناتات معالاناناناتات محملاناتاتاتاتات ومحمد محمد محمد محمد محمد محمد محمد محم	1719	المالية من معامل المالية المالي 1942 - من

The Cu(II) atom in CuTeO₃ was found to have an irregular oxygen coordination (Lindqvist, 1972). In CuTe₂O₅ it has a more ordinary environment, with four closest oxygen atoms (Cu-O: 1.950-1.969 Å) in an approximately square-planar configuration and with two further oxygen neighbours at distances of 2.303 and 2.780 Å in directions completing a distorted octahedron. The coordination of the copper atom is in very good agreement with that found in CuO (Åsbrink & Norrby, 1970), apart from the fact that both the weak bonds in CuO are 2.780 Å. However, the Cu-O interactions in the octahedral directions can be considered very weak in comparison with the strong planar bonds, and the difference in the former interactions in the two structures can be regarded as a consequence of the geometrical arrangement in the particular structure, this having no appreciable effect on the copper-oxygen planar orbital system. In related compounds, such as CuTeO₃.2H₂O (Zemann & Zemann, 1962) and CuSeO₃. 2H₂O (Gattow, 1958), the copper coordination is also approximately square planar, and the Cu-O distances in the octahedral directions were found to be 2.35 and 3.34 Å, and 2.27 and 3.21 Å, respectively.

Since the two independent tellurium atoms are both connected to O(2), Te_2O_5 units [cf. Fig. 2(a) and Table 7] may be regarded to be present in the structure. Such Te_2O_5 groups have also been found in denningite (Walitzi, 1965). The threefold Te coordination in these units is disturbed, since they are connected *via* copper atoms, and, moreover, since there are additional Te-O contacts of 2.402, 2.607 and 2.733 Å in the structure.

A pure threefold Te(IV) coordination may be described as a trigonal bipyramid with equal Te-O bond distances and with O-Te-O angles near 95° (Zemann, 1968), the Te(IV) lone pair being opposite to the basal plane of the pyramid. When fourfold coordination occurs, it is usually possible to describe the Te(IV) oxygen polyhedron as a distorted trigonal bipyramid, in which one of the equatorial sites is occupied by the Te(IV) lone pair. It is also possible to distinguish between the longer axial bonds and the shorter equatorial bonds, and the angle between the equatorial bonds is significantly greater than the angles

		Table 6 (cont.)			
10-14-14-14-14-14-14-14-14-14-14-14-14-14-	4444 44444 44444 44444 444444		 Διλιδιάτιο το /li>	 	א שוון און איז

between one axial and one equatorial bond (cf. review article by Zemann, 1971). Åström, Andersson, Galy & Meunier (1973) have shown that this configuration is quite natural if one considers the Te(IV) position in a hexagonal close-packed arrangement of oxygen atoms, the Te(IV) lone pair taking the place of an oxygen atom. Along these lines it was possible to calculate expected dimensions for the Te(IV)O₄ polyhedron, *i.e.* Te-O_{ax} = 2·22 Å, Te-O_{eq} = 1·90 Å, O_{ax}-Te-O_{ax} = 159·8° and O_{eq}-Te-O_{eq} = 99·4° (Åström *et al.*, 1973). Zemann (1971) has pointed out that Te(IV) oxo

Zemann (1971) has pointed out that Te(IV) oxo compounds usually have three nearest neighbours with relatively constant configuration, while the distance to the fourth closest oxygen atom varies greatly (from 2.08 to 2.98 Å), but in a fairly constant direction. A simple way of deciding whether or not the fourth

Fig. 1. Stereoscopic view of the structure.

Table 6 (cont.)

аландан алардан br>1949 - Алардан br>1949 - Алардан	المالية فالمالية في المالية المالية في معالماته المالية في المالية المالية المالية المالية المالية المالية الم مالية المالية من مناسبة المالية المالية من محالمة من محالماته من				17、 101717、 1817171717~、 1817171717~、 101711717~、 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 1817171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~~ 18171717~ 141717~~~~~~~~~~~~~~~~~~~~~~~~~~
---	--	--	--	--	---

oxygen neighbour has a significant influence on the Te(IV) bonding orbitals, and thus a way of qualitatively estimating the strength of the fourth Te-O interaction, would be to observe the strong Te-O bond on the opposite side of the tellurium atom and the angle between the two other short Te-O bonds. If this bond is longer than the other two and if the angle is significantly larger than the other two angles in the Te pyramid, elements of fourfold coordination can be regarded as being present.

In $CuTe_2O_5$ the fourth oxygen neighbour of Te(2) is O'(3) at a distance of 2.402 Å. From Table 7 it is evident that Te(2) shows fourfold geometry, thus indicating that the Te(2)-O'(3) interaction is of considerable strength. The M-O(3)-M angles (Table 8) are all close to 120° which is to be expected for an oxygen atom with bonds to three metal atoms. Similar conditions hold for the coordination of Te in denningite (Walitzi, 1965) and of Te(2) in CuTeO₃ (Lindqvist, 1972), where the fourth Te-O bond disstances are 2.36 Å and 2.32 Å respectively.

The oxygen arrangement around Te (1) in CuTe₂O₅ is closer to pure threefold coordination, as a conse-

Table 7. Tellurium and copper coordination distances (Å) and angles (°)

The standard deviations are 0.003 Å for all distances and lie in the range 0.09-0.14° for all angles. The notation is in accordance with Fig. 2.

-			
Te(1) - O(3)	1.877	Cu-O(5)	1.950
Te(1) - O(4)	1.883	Cu-O(1)	1.952
Te(1) - O(2)	1.931	Cu-O(4)	1.961
Te(1) - O'(4)	2.607	Cu-O(3)	1.969
Te(1) - O'(1)	2.733	Cu-O'(5)	2.305
		Cu-O(2)	2.780
Te(2) - O(1)	1.859		
Te(2) - O(5)	1.866	O(1)-Cu-O(2)	65.8
Te(2) - O(2)	2.019	O(1) - Cu - O(3)	86·2
Te(2) - O'(3)	2.402	O(1) - Cu - O(4)	166.7
., .,		O(1)-Cu-O(5)	90·4
O'(1)-Te(1)-O(2)	16 2 ·6	O(1) - Cu - O'(5)	97.8
O'(1) - Te(1) - O(3)	74.9	O(2) - Cu - O(3)	90.0
O'(1) - Te(1) - O(4)	102.2	O(2) - Cu - O(4)	102.7
O'(1) - Te(1) - O'(4)	85.4	O(2) - Cu - O(5)	91·0
O(2) - Te(1) - O(3)	92.8	O(2)-Cu-O'(5)	162.7
O(2) - Te(1) - O(4)	91·0	O(3)-Cu-O(4)	87·2
O(2) - Te(1) - O'(4)	79·0	O(3) - Cu - O(5)	175-7
O(3) - Te(1) - O(4)	94.6	O(3)-Cu-O'(5)	94.5
O(3) - Te(1) - O'(4)	72.3	O(4)-Cu-O(5)	96.7
O(4) - Te(1) - O'(4)	162.8	O(4) - Cu - O'(5)	94·2
		O(5)-Cu-O'(5)	83.3
O(1) - Te(2) - O(2)	86.6		
O(1) - Te(2) - O'(3)	80.0		
O(1) - Te(2) - O(5)	99·0		
O(2) - Te(2) - O'(3)	166.6		
O(2) - Te(2) - O(5)	88.6		
O'(3) = O(3) O(3)	07.8		

quence of the longer distances to the additional oxygen atoms O'(1) (2.733 Å) and O'(4) (2.607 Å). Such distances have, however, been reported to correspond to significant interatomic interactions, for example in $Te(C_6H_4O_2)_2$ (Lindqvist, 1967) and in Te_2O_5 (Lind-

Table 8. Oxygen contacts below 3.6 Å and M-O-M angles

The last column in the distance list represents the metal atoms to which the two oxygen atoms are bonded. Strong and weak bonds are indicated as = and -, respectively. The standard deviations of the angles lie in the range 0.10-0.18°.

O(1) - O(2)	2·662 (4) Å	=Te(2)=, =Cu-
O(1) - O(3)	2.678(4)	=Cu=
O(3)-O(4)	2.710 (4)	=Cu=, =Te(1)-
O(2) - O(5)	2.715 (4)	=Te(2)=
O(2) - O(4)	2.719 (5)	=Te(1)=
O(2) - O(3)	2.760(4)	=Te(1)=
O(3) - O(4)	2.762 (4)	=Te(1)=
O(1) - O(5)	2.768 (5)	=Cu=
O(1) - O(3)	2.770 (4)	=Te(2)-
O(1) - O(5)	2.834(4)	=Te(2)=
O(5) - O(5)	2.839 (6)	=Cu-
O(1) - O(3)	2.855 (4)	=Te(1)-
O(4) - O(5)	2.922 (5)	=Cu=
O(2) - O(4)	2.931 (5)	=Te(1)-
O(3) - O(5)	3.114 (4)	=Te(2)-
O(4) - O(5)	3.132 (5)	=Cu
O(3)-O(5)	3.146 (5)	=Cu
O(1)-O(5)	3.214 (4)	=Cu-
O(1) - O(1)	3.339 (6)	
O(2) - O(3)	3.407 (4)	=Cu-
O(2) - O(5)	3.424(5)	=Cu-

Table 8 (cont.)	
Cu===O(1)=Te(2)	115·0°
Cu===O(1)-Te(1)	114·6
Te(1)-O(1)=Te(2)	128·2
Te(1)=O(2)=Te(2)	120·8
Cu-O(2)=Te(1)	156·8
Cu-O(2)=Te(2)	82·4
$\begin{array}{l} Cu === O(3) = Te(1) \\ Cu === O(3) - Te(2) \\ Te(1) = O(3) - Te(2) \end{array}$	112·7 108·4 126·4
Cu == O(4) = Te(1)	130·1
Cu == O(4) - Te(1)	87·8
Te(1) = O(4) - Te(1)	120·5
Cu===O(5)=Te(2)	121·4
Cu===O(5)-Cu	96·7
Cu===O(5)=Te(2)	128·4

qvist & Moret, 1973). The above criteria for fourcoordination holds rather well for O'(1), and better for O'(1) than for the slightly closer O'(4). The M-O(1)-M angles are also consistent with a Te(1)-O'(1) interaction. These arguments thus suggest that the Te(1)-O'(1) force is stronger than that between Te(1) and O'(4). This might be feasible, bearing in mind that geometrical strains imposed by the stronger M-O bonds certainly influences these distances of $2\cdot6-2\cdot8$ Å more than the corresponding weak Te-O interactions.

The authors are grateful to Professor Georg Lundgren for his careful criticism of this paper, and to Dr Susan Jagner for revising the English text. Financial support has been obtained from the Deutsche Forschungsgemeinschaft and from the Swedish Natural Science Research Council (NFR, Contract No. 2318).

References

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- COPPENS, P. & HAMILTON, W. C. (1970). Acta Cryst. A26, 71–83.
- COPPENS, P., LEISEROWITZ, L. & RABINOVICH, D. (1965) Acta Cryst. 18, 1035–1038.
- CROMER, D. T. (1965). Acta Cryst. 18, 17-23.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104-109.
- DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A 24, 390-399.
- GATTOW, G. (1958). Acta Cryst. 11, 377-383.
- HANKE, K. (1966). Naturwissenschaften, 53, 273.
- HANKE, K. (1967). Naturwissenschaften, 54, 199.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849-859.
- LINDQVIST, O. (1967). Acta Chem. Scand. 21, 1473-1483.
- LINDQVIST, O. (1971). Acta Chem Scand. 25, 740.
- LINDQVIST, O. (1972). Acta Chem. Scand. 26, 1423-1430.
- LINDQVIST, O. & MORET ,J. (1973). Acta Cryst. B29, 643-650.

. ,

Fig. 2. Coordination of (a) the two tellurium and (b) the copper atoms.

- MATZAT, E. (1971). FURIE, Program Library of Min.-Krist. Institut, Göttingen.
- MORET, J., PHILIPPOT, E. & MAURIN, M. (1969). C. R. Acad. Sci. Paris. Sér. C, 269, 123-125.
- SÜSSE, P. (1969). Program Library of Min.-Krist. Institut, Göttingen.
- WALITZI, E. M. (1965). *Tschermaks Mineral. Petrogr. Mitt.* 10, 241–255.
- WILSON, A. C. J. (1942). Nature, Lond. 150, 151-152.
- ZEMANN, J. (1968). Z. Kristallogr. 127, 319-326.
- ZEMANN, J. (1971). Mh. Chem. 102, 1209-1216.
- ZEMANN, A. & ZEMANN, J. (1962). Acta Cryst. 15, 698-702.
- ÅSBRINK, S. & NORRBY, L.-J. (1970). Acta Cryst. B26, 8-15.
- ÅSTRÖM, A. (1972). Thesis. Univ. of Lund, Lund, Sweden.
- ÅSTRÖM, A., ANDERSSON, S., GALY, J. & MEUNIER, G. (1973).
- J. Solid. State. In the press.